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Why predict protein structures?
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Structure prediction methods

 Template-based methods:
— Comparative modelling (or Homology modelling):

* There exists a protein with clear homology.

e Uses sequence-based techniques to identify a
template. — Protein Threading/Fold recognition:

* There exists a protein of similar fold (analogy).

 Template-free methods:
— Novel fold prediction



Fragment assembly — Protein structure
prediction
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Fragment assembly — Protein structure
prediction

Where for any given position, there are multiple pieces
that can fitin it...

Where the pieces got mixed up with pieces from another
puzzle...

Where some pieces are missing...

J '%/ r %g A) And where you cannot look at the box to check how it is
= supposed to look like...




How does it work? . . -

* Energy function

— Usually from a Bayesian treatment of residue distributions in known
protein structures sometimes combined with physics based energy
terms

— Pair potential terms, Solvation potentials terms, Steric terms, Long-
range hydrogen bonding, compactness term

— Predicted contacts from co-evolution methods
* Use a Monte Carlo search procedure
— Move set based on fragments of protein structures

* Generate thousands of decoys

e Select afinal answer



Ways to improve Fragment assembly

* Consider secondary structure when assessing your fragment library
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Ways to improve Fragment assembly

* Consider secondary structure when assessing your fragment library
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Ways to improve Fragment assembly

* Consider secondary structure when assessing your fragment library
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Ways to improve Fragment assembly

* Consider secondary structure when assessing your fragment library
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Ways to improve Fragment assembly

* Consider secondary structure when assessing your fragment library
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Ways to improve Fragment assembly

e Use contact predictions
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Two residues that mutate in a correlated fashion (co-evolve)
are inferred to share spatial proximity.

Oliveira et al Bioinformatics (2016)



Improving co-evolution contact prediction

Correlation in amino acid substitution may arise from direct as
well as indirect interactions.

Need to use the information of all columns in the multiple sequence alignment when
ascertaining the correlation between two individual columns

Mean Field Direct Coupling Analysis

Estimate the inverse covariance matrix
to assign a score to residue pairs

Learn the direct couplings as parameters
of a Probabilistic Graphical Model
(Markov random field) by maximizing
its pseudo-likelihood.




Methods

Test set - 3458 proteins
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Oliveira et al (2016)



Contact definition

Two protein residues are defined to be in contact
if their C-Bs (C-as for Glycine) are less than 8 A
apart

Contacts between residues being less than five
residues apart and are not considered

A short-range contact between residues iand j is
defined when 5< |i—j |>23.

A long range contact is defined when |i —j| > 23

Jones et al (2012)
Marks et al (2011)



How many sequences do you need in
the multiple sequence alighment?
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Precision

How accurate are the methods?

Precision for the top L predicted contacts
Precision for the top L/10 predicted contacts
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Putting co-evolutionary contacts into
protein structure prediction

geontact _ 0, 1f Hcﬁ(?’) - CB(])H < 8.0 A
- |Cs(2) — Cs(7)]| — 8.0 A, otherwise.

Where Cg(7) and Cg(j) represent the coordinates of the C-3s (C-as
in the case of glycine) of residues ¢ and j and:

1Cs(6) —CaIl =, [ > (CEG)—C5(3))?



How do they influence structure
prediction?
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Density

Using co-evolution contacts to identify
good models
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Ways to improve Fragment assembly

* |mprove your search strategy

newly born protein

There is a hypothesis that
proteins begin to fold as they
are being synthesized. This is
known as cotranslational
protein folding.

Oliveira et al Bioinformatics (2017)



Improving the search: Cotranslational
protein structure prediction

Co-translational, series of smaller
optimisation problems
Therefore- faster

Oliveira et al Bioinformatics (2017)



Number of decoys required

Table 1. Number of decoys produced by
different de novo structure predictors as
described in recent works.

Method: Number of Decoys:

FRAGFOLD (6) 200
CABS(7) 360
MBS (8) 3,000

RBOaleph (9) 1,000-5,000
QUARK (10) 5,000
Nefilim (11) 150,000
EDAfold (12) 200,000

Rosetta (13) 20,000-900,000

Oliveira et al Bioinformatics (2017)



Number of decoys required
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ct Answer

a Corre

Number of Decoys Required to Produce

20000 40000 60000 80000

0

Number of decoys required

A alpha/beta
4 alpha+beta
4 all beta

all alpha

Number decoys to get a
correct answer ~10,000

Number of decoys to get
best answer ~20,000

Not dependent on protein
length (if length <250)

Oliveira et al Bioinformatics (2017)



SAINT2 Non-sequential
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Improving the search: Cotranslational
protein structure prediction

Most current de novo structure prediction methods randomly sample
protein conformations

— Require large amounts of computational resource

SAINT?2 uses a sequential sampling strategy, suggested by biology

— SAINT2 requires ~10,000 decoys to produce a good answer fewer than most
other methods suggest

Sequential sampling improves speed
— 1.5 to 2.5 times faster than non-sequential prediction.

SAINT2 sequential produces better models

SAINT2 sequential a pseudo-greedy search strategy that reduces
computational time of de novo protein structure prediction and improves
accuracy

Oliveira et al Bioinformatics (2017)
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Memoir

Membrane protein
modelling pipeline

S
Memoir is a homology modelling algorithm designed for membrane proteins. The inputs
are the sequence which is to be modelled, and the 3D structure of a template membrane
protein. We have a short video tutorial on how to use Memoir and an example results
page. We also have a tutorial on how to model multiple chain transmembrane

proteins.

NetEMD

Antibody Search CDR Seach COR clustering ABangle

SAbDab

Structural Antibody Database.

Template search Antibody Tools Help

ABangle Search Database CDR Search

CDR Clustering Template Search




